Gene Ontology tools and resources Antonia Lock

Objectives

- To explain
 - What the Gene Ontology (GO) is and its limitations
 - Where GO annotations come from
 - How it is accessed
 - How it is used

AASDH aminoadipate-semialdehyde dehydrogenase

Term T	Annotation Extension	Evidence	With/From	Citations
fatty acid metabolic process		IEA 🗹	UniProtKB-KW:KW-0276	ZFIN Electronic Annotation
lipid metabolic process		IEA 🗹	UniProtKB-KW:KW-0443	ZFIN Electronic Annotation

Process	Evidence Code	Pubs	
involved in amino acid activation for nonribosomal peptide biosynthetic process	<u>IBA</u>	PubMed	
involved_in_beta-alanine_metabolic_process	<u>IEA</u>		NCBI gene
involved_in fatty acid metabolic process	ISS		Ŭ

amino acid activation for nonribosomal peptide biosynthetic process 🗹 📃 Manual Assertion Based On Experiment 📃 IBA:GO_Central	LIniDrot
fatty acid metabolic process 🖸 📕 ISS:UniProtKB	UNFIO

amino acid activation for nonribosomal peptide biosynthetic process	IBA	PANTHER:PTN005201788 MGI:MGI:2442517
fatty acid metabolic process	ISS IEA	UniProtKB:Q4G176 UniProtKB-KW:KW-0276
lipid metabolic process	IEA	UniProtKB-KW:KW-0443

The Gene Ontology (GO)

The world's largest resource on gene functions (http://geneontology.org/)

Aims to capture biological knowledge and to describe attributes of gene products:

- In a species agnostic manner allows transfer of knowledge between organisms
- In language interpretable by humans and machines (ontologies)
 - Enables computational analyses for interpretation of high-throughput experimental and clinical data
 - Enables access to data at scale

Freely available

Two parts; the **ontology** and the **annotations**

- An ontology is a dictionary of defined terms, but with hierarchal relationships to each other
- An annotation is an association of a gene product with an ontology term

What GO is not

- GO only describes 'normal' biological processes and functions
- It does NOT cover pathological processes (e.g. disease) or functions only observed in vitro
- It is not static
 - Both the ontology and annotations are reviewed and updated regularly
 - Always ensure you use up-to-date releases in analysis

The Ontology

GO provides systematic language to describe gene products in three domains:

Molecular Function (MF)

- Single step tasks
 - fumarase, protein kinase, cargo receptor

Biological Process (BP)

- A recognized series of events
 - citric acid cycle, cell division, kidney development

Cellular Component (CC)

- Where gene products localize
 - mitochondrion, lysosomal membrane, synapse

Why is GO useful?

- Disambiguate language
 - The same name is used for different concepts

Tooth **bud** initiation

Cell **bud** initiation

Flower bud initiation

- Different names describe the same concept
 - Citric acid cycle, tricarboxylic acid cycle, TCA cycle, Krebs cycle
- This makes comparisons across species or databases difficult

GO facilitates gene specific data aggregation

- Allows systematic capture of gene-specific knowledge
 - Curate detail, annotating genes to 'terms'
- Involves time-consuming curation/annotation activities
 - Literature searching, database searching, sequence analysis...
 - 165.000+ publications annotated for GO

Data aggregation on this scale is not feasible for individual research groups

GO allows grouping genes by feature

- Essentially creating lists of genes with similar features
 - Useful to plan experiments
 - What genes encode protein kinases...
 - Analysing data
 - Identifying trends (enrichments)
 - What do the genes in my screen have in common...

FAIR - four founding principles for good data management

Guidelines to improve the Findability, Accessibility, Interoperability, and Reuse of digital assets.

The principles refer to three types of entities: data (or any digital object), metadata (information about that digital object), and infrastructure.

Findable:

- Metadata and data should be easy to find for both humans and computers.
- Machine-readable metadata are essential for automatic discovery of datasets and services.
- Associate data with identifiers, metadata, & deposit/index in a searchable repository

Accessible

- Once the user finds the required data, she/he/they need to know how they can be accessed, possibly
 including authentication and authorisation
- Metadata is retrievable and accessible using standardized protocols

Interoperable

- Data needs to be integratable with other data & interoperate with applications or workflows for analysis, storage, and processing.
- Metadata and data described using accessible and widely acceptable/domain-specific language

Reusable

- The ultimate goal of FAIR is to optimise the reuse of data.
- Well-described metadata and data so they can be replicated and/or combined in different settings.
- Clear data provenance & usage license
 The FAIR Guiding Principles for scientific data management and stewardship. Wilkinson et al (2016) PMID:26978244

Ontologies

•Help us build standards for terms used in a particular domain

• Consists of several parts:

- Classes / entities / terms
- Metadata
- Relationships
- File formats
- Axioms

Ontology parts: Classes

Basic unit within an ontology, representing things within a domain

• Eg. endocytosis, hydrogen peroxide, fragile X syndrome

Associated with **stable** and **semantics-free** identifiers to promote stability even though ontology representation may change with new scientific knowledge

 e.g. GO:0006897, CHEBI:16240 and MONDO:0010383 or OMIM:300624 or DOID:14261)

Classes may be merged

• Alternate IDs maintained as secondary identifiers

Classes may be **obsoleted**

- Shouldn't be used for further annotation, but kept for historical records
- Obsolete classes may contain metadata pointing to alternative classes

Ontology parts: Metadata

Information associated with classes

Term definition: Both a **textual definition** (aimed primarily at humans) and **logical definition** (aimed primarily at machines)

- Curators must always annotate to the term definition, not the term name
- **Good** definitions are important:
 - Promote inter-curator annotation agreement
 - Facilitates integration: Allows non-experts and experts in adjacent disciplines to understand unfamiliar terms, enabling use of terms from external ontologies
 - Allow ontology developers to use assisting tools such as "reasoners" (more later in "tools")

From C. Mungall's blog post: OntoTip: Write simple, concise, clear, operational textual definitions https://douroucouli.wordpress.com/2019/07/08/ontotipwrite-simple-concise-clear-operational-textual-definitions/ Why is multiple inheritance preferred over single inheritance?

Classification of *proximal phalanx of middle finger* (PPoMF)

- *is-a* links are shown as black arrows
- missing is-a relationship indicated with a dashed red line

If a phenotype involving the *proximal phalanx of middle finger* (PPoMF) is annotated, and a user queries for *proximal phalanx of* [*any*] *finger* (PPoF), **the user will not get the expected results**.

The missing relationship is from a singleinheritance ontology - the missing relationship is by design.

Ontology parts: Metadata

Information associated with classes

- Secondary IDs: resulting from term merges), obsoletion flags, synonyms, cross-references to alternative databases
 - Synonyms come in different types, e.g. exact, related, narrow
 - Different ontologies might crossreference other ontologies for different reasons!
- e.g. GO cross-references EC and Rhea and links to publications supporting the existence of the class, other ontologies may cross-reference chemical compounds participating in a reaction)
- May contain comments and examples of intended usage

tricarboxylic acid cycle

Term Information 🔞

Accession	GO:0006099 Data health 💙
Name	tricarboxylic acid cycle
Ontology	biological_process
Synonyms	Krebs cycle, TCA cycle, citric acid cycle
Alternate I	None
Definition	A nearly universal metabolic pathway in which the acetyl group of acetyl coenzyme A is effectively oxidized
	to two CO2 and four pairs of electrons are transferred to coenzymes. The acetyl group combines with oxaloacetate to form citrate, which undergoes successive transformations to isocitrate, 2-oxoglutarate, succinyl-CoA, succinate, fumarate, malate, and oxaloacetate again, thus completing the cycle. In eukaryotes the tricarboxylic acid is confined to the mitochondria. See also glyoxylate cycle. <i>Source:</i> ISBN:0198506732
Comment	None
History	See term history for GO:0006099 at QuickGO
Subset	None

apoptotic signaling pathway

Term Informat	lion 🥹
Accession	GO:009/190 Data health 💙
Name	apoptotic signaling pathway
Ontology	biological_process
Synonyms	apoptotic signalling pathway, induction of apoptosis by extracellular signals
Alternate I	GO:0008624
Definition	A series of molecular signals which triggers the apoptotic death of a cell. The pathway starts with reception
	of a signal, and ends when the execution phase of apoptosis is triggered. Source: GOC:mtg_apoptosis
Comment	This term can be used to annotate gene products involved in apoptotic events happening downstream of the
	cross-talk point between the extrinsic and intrinsic apoptotic pathways. The cross-talk starts when
	caspase-8 cleaves Bid and truncated Bid interacts with mitochondria. From this point on it is not possible to
	distinguish between extrinsic and intrinsic pathways
History	See term history for GO:0097190 at QuickGO
Cubact	
Subset	none

Ontology parts: Relationships

Classes are arranged in a **hierarchy** from general to specific Relations between classes provide structure to the ontology

 Broad general/ancestor/parent terms give rise to specific/descendant/child terms

Important since relationships within the ontology enable transitive **inheritance of annotations**

- I.e. when annotating to a more specific class, the annotated feature (such as a protein, or a drug) is automatically annotated to all the more general classes
- A search to a parent term can retrieve all children
- Every possible path from a term back to the root node must be accurate, or the ontology must be revised

Ontology parts: Relationships & ontology structure

Relationships link together terms in the ontology

Ontologies can take on a simple tree structure (hierarchy)

Most bio-ontologies are structured as more complex **directed acyclic graphs** (DAGs)

Hierarchy

- Parent: one to many children
- Child: only one parent
- Relationship: *is a*

DAG

- Many to many each direction
- Many relationship types
- No circles

Ontology parts: Relationships

Relationships common to many ontologies

- **Is_a:** is a subtype of
 - A volvo is_a car
 - The mitochondrion is an organelle
- Part_of:
 - A wheel is part_of a car
 - The mitochondrial lumen is part_of the mitochondrion

- Vesicle mediated transport consists of several ordered steps
- All steps (e.g. docking, fusion, uncoating) are *part_of* vesicle mediated transport

- Acyclic no circles allowed
- Ancestors are inherited
- >40.000 terms across the three ontologies

- Each step may be connected to their own separate parts of the ontology
 - Vesicle fusion *is_a* organelle membrane organization
 - Vesicle uncoating *is_a* protein depolymerization

Annotation inheritance

- An important feature of GO is that broader parents give rise to more specific children.
- When a gene is directly annotated to a term it is automatically indirectly annotated to all its parent terms ...therefore a search on a parent retrieves children
 - E.g. all genes annotated to "mitochondrial lumen" are also annotated to "mitochondrion"
- Every possible path from any term back to the root node must be biologically accurate, or the ontology must be revised

Functional biocuration

- A functional annotation is the association of a feature (e.g. a gene) with an ontology term
 - A statement that a gene product performs a specific function, localizes to a particular structure, or participates in a specific pathway
 - Currently 1 billion+ GO annotations
- Two main aspects
 - Literature curation (reading full text publications and associating novel biological information with the appropriate genes or features)
 - Sequence analysis (infer information for unpublished genes)
- Manual curation
 - Curators from annotation groups (e.g. ZFIN, UniProt) create annotations based on published experiments
 - Low throughput
 - Annotations are then transferred to orthologous genes (manually or automatically)
- Electronic pipelines (bulk annotation)
 - Many are based on interpro signatures (InterPro2GO) or 1:1 orthologs from Ensembl gene trees.
 - Typically results in high level, but high quality, annotations (PMID:22693439)
 - High throughput

Caution

- Not all annotations are transferred to all species, even if genes have a 1-to-1 orthologous relationship.
- Would be incorrect to transfer this annotation from chick BMP4 to human BMP4
 - Accession GO:0071730
 - Name beak formation
 - Ontology biological_process
 - Synonyms None

Alternate I... None

Definition The process that gives rise to the beak. This process pertains to the initial formation of a structure from unspecified parts. The avian beak is an external anatomical structure, in the head region, that is adapted for feeding self and young, catching prey, probing, etc. It encompasses, but is not restricted to, the maxilla, mandible, maxillary rhamphotheca, mandibular rhamphotheca, nostril, nasal fossa, nasal bones, egg tooth and rictus. *Source:* GOC:lp, ISBN:0702008729

Evidence codes – describes how an annotation is supported

- Many types, only a subset listed below. <u>http://geneontology.org/docs/guide-go-evidence-codes/</u>
- **Experimental** evidence from wet-lab experiments e.g:
 - IDA: Inferred from Direct Assay enzyme assays, immunofluorescence
 - IMP: Inferred from Mutant Phenotype comparison of differences in phenotypes from two different alleles

Computational

- ISO / ISS Inferred from Sequence Orthology / Similarity
- Phylogenetic
 - IBA Inferred from Biological aspect of Ancestor phylogenetic analyses to transfer annotations amongst related sequences based on common ancestry
- "No evidence"
 - IC Inferred by Curator
- Author statements
- Automatic
 - IEA Inferred from Electronic annotation automatic transfer of annotations based on the presence of sequence features or on orthology. The annotations are not manually reviewed.

Beyond basic GO annotation: Annotation extensions

- Provides additional detail to GO annotations
 - E.g. the target gene or the location of a molecular function
- Provides curated, directional links between gene products
 - supports network construction

Contextual relationships	Example (gene product; primary GO term; annotation extension)
part_of	C. elegans psf-1; nucleus; part_of(WBbt:0006804 body wall muscle cell)
occurs_in	Mouse opsin-4; G-protein coupled photoreceptor activity; occurs_in(CL:0000740 retinal ganglion cell)
happens_during	S. pombe wis4; stress-activated MAPK cascade; happens_during(GO:0071470 cellular response to osmotic stress)
Molecular relationships	Example (gene product; primary GO term; annotation extension)
has_regulation_target	Human suppressor of fused homolog SUFU; negative regulation of transcription factor import into nucleus; has_regulation_target(UniProtKB: <u>P08151</u> zinc finger protein GLII)
has_input	S. pombe rlf2; protein localization to nucleus; has_input(PomBase:SPAC26H5.03 pcf2)

Huntley et al. PMID:24885854

Beyond basic GO annotation: Causal Activity Modeling (GO-CAM)

- Provides a framework to link GO annotations in integrated models of biological systems
 - A GO annotation is the association of a gene product with a term in the 3 ontologies
 - In GO, what gene products do (Molecular Functions) are distinct from the larger biological programs they are part of (Biological Processes) and where they take place (Cellular Components)
 - For traditional GO annotation there has been little representation of how annotations to one gene fit together
 - Provides a system for formalizing and extending GO annotations
 - Enables pathway visualisation
 - Documentation: <u>http://geneontology.org/go-cam</u>

а

NEDD4

Set of disconnected annotations vs. a model linking the GO annotations

Combines multiple simple GO annotations into an integrated, semantically precise and computable model of biological function

Thomas et. al PMID:31548717

More complex statements can be represented

Thomas et. al PMID:31548717

Centres on a molecular activity

....carried out by a gene product or complex (brown)

...that may act on another entity (dark blue)

...the activity occurs in a location (green)

...and part of a specific biological program (blue)

.....which may be part of a larger process or phase, or anatomical structure or cell type (curved arrow)

...and may have causal effects on other molecular activities (red arrow)

.....effectively creating networks of activities

Accessing GO annotations

- GO downloads <u>http://current.geneontology.org/products/pages/downloads.html</u>
- Browsers
 - ZFIN https://zfin.org/
 - QuickGO <u>https://www.ebi.ac.uk/QuickGO/</u>
 - AmiGO 2 <u>http://amigo.geneontology.org/amigo</u>
- File formats
 - A GAF (Gene Association File) is a GO annotation file containing annotations made to the GO
 - The GPAD Gene Product Association File Format is an alternative means of exchanging annotations from the GAF. The GPAD format is designed to be more normalized than GAF.

Ontology and annotation browsers

- Two main generic browsers: QuickGO and AmiGO
- QuickGO (EMBL-EBI)
 - https://www.ebi.ac.uk/QuickGO/
 - Nice graphical view for term browsing
 - Webinar: <u>https://www.ebi.ac.uk/training/events/quickgo-gene-ontology-annotation/</u>
 - Tutorial: <u>https://www.ebi.ac.uk/training/online/courses/goa-and-</u> <u>quickgo-quick-tour/#vf-tabs__section--gettingstarted</u>
- AmiGO (GOC)
 - <u>http://amigo.geneontology.org/amigo</u>
 - Easy access to annotations with faceted search

AmiGO₂

More information on quick search

Search

View the most recent statistics about the Gen

Advanced Search

Interactively search the Gene

search syntax and filters

Ontology data for annotations, gene

products, and terms using a powerful

Statistics

1.1.1

Ontology data in AmiGO.

Browse the Ontology

Use the drill-down browser to view

the ontology structure with

annotation counts.

GOOSE

3

And Much More

JavaScript page

1

database with SQL

Many more tools are available from the software list

such as alternate searching modes, Visualize, non-

Use GOOSE to query the legacy GO

Quick search

Search Templates

Gene Ontology data.

Term Enrichment Service

Your genes here ...

biological process

 \sim

Use predefined templates to explore

QuickGO ancestor view

Ancestor chart

Comparison chart for GO:0035556,GO:0050896,GO:0010646,GO:00C

Accession GO:0005618 Name cell wall

AmiGO 2

AmiGO – species filter

Ontology	cellular_component					
Synonyms	None	Filter results	Total gene product(s): 7968; showing	g: 1-10 «First	<prev nex<="" td=""><td>d> Last» ⊙</td></prev>	d> Last» ⊙
Alternate I	None		Results count 10 V	Cono/product name	Organism	DANTHED family
Definition	The rigid or semi-rigid envelope lying outside the cell membrane of plant, fungal, most prokaryotic	lotal gene product(s): 7968			Vitianiaitan	
	them from osmotic lysis. In plants it is made of cellulose and, often, lignin; in fungi it is compose		U VII_06S0080g00840	membrane protein 2	vitis vinitera	dehydrogenase
	protozoan parasites such as Giardia species, it's made of carbohydrates and proteins. Source: C	Free-text filter				pthr11615
Comment	Not to be used for manual annotation. Please choose a more specific term: for bacteria, annotate		ZEAMMB73_Zm00001d046105	Putative RAN GTPase	Zea mays	beta-galactosidase
	GO:0009505 ; plant-type cell wall, for fungi: GO:0009277 ; fungal-type cell wall, and for archae, u			activating family protein		related pthr23421
History	See term history for GO:0005618 at QuickGO	User filters ×	103638909	Peroxidase	Zea mays	peroxidase 25-rela ptbr31235
Subset	goslim_metagenomics	+ regulates_closure: GO:0005618 -	0 102640219	Derevideoa	7	perovideos 25 role
	gocheck_do_not_annotate		0 103040210	Peroxidase	zea mays	peroxidase 25-rela pthr31235
	goslim_aspergillus		EUGRSUZ_A01181	Uncharacterized protein	Eucalyptus	beta-galactosidase
	goslim_chembl	Your search is pinned to these filters		(Fragment)	grandis	related pthr23421
	goslim_plant	 document category: bioentity 	EUGRSUZ_A00966	Peroxidase	Eucalyptus	peroxidase 25-rela
	goslim_generic				grandis	pthr31235
	goslim_candida		EUGRSUZ_A01166	Peroxidase	Eucalyptus grandis	peroxidase 25-rela pthr31235
	goslim_yeast	Source	□ EUGRSU7 A00298	Peroxidase	Fucalvotus	peroxidase 25-rela
	<u>aoslim_pic</u>	Source	0 200.00020.0020		grandis	pthr31235
Rela ed	Link to all genes and gene products annotated to cell wall.	Organism	EUGRSUZ_A00297	Uncharacterized protein	Eucalyptus	peroxidase 25-rela
	Link to all direct and indirect annotations to cell wall.	TVDe			grandis	pthr31235
	Link to all direct and indirect annotations download (limited to first 10,000) for cell wall.	-76-	EUGRSUZ_A00299	Peroxidase	Eucalyptus grandis	peroxidase 25-rela pthr31235
		PANTHER family			5.	
		Direct annotation				

Inferred annotation

(6581) Eukaryota

(4143) Viridiplantae

Bacteria

(2367) Fungi

(853)

Organism

AmiGO – species filter

Organism

The top (2) redundant fields are not shown

- (206) Candida albicans SC5314
 - (147) Aspergillus nidulans FGSC A4

- (115) Aspergillus niger CBS 513.88
- (109) Aspergillus oryzae RIB40
- (104) Lodderomyces elongisporus NRRL YB-4239

440) One list the line line MAXA 2404

- Meyerozyma guilliermondii ATCC (95)
- [Candida] glabrata CBS 138 (93)
- Clavispora lusitaniae ATCC 42720 (90)

-	(129)	Candida	albicans	WO-1
---	-------	---------	----------	------

- (103) Aspergillus fumigatus
- Debaryomyces hansenii CBS767 (99)
- 6260

- Candida parapsilosis CDC317 (70)

Total gene product(s): 2 Results count 10	367; showing: 1-10	«First	<prev< th=""><th>Next></th><th>Last»</th><th>Oustom DL</th></prev<>	Next>	Last»	Oustom DL
Gene/product	Gene/product name	Organism		PANTH	IER family	Y
SNOG_02161	Uncharacterized protein	n Parastagonospora gpi-anchored protein 1 nodorum SN15 pthr35607		tein 10		
□ SNOG_04645	Uncharacterized protein	Parastagon nodorum SI	ospora N15	glucan pthr166	1,3-beta-g 631	lucosidase
SNOG_04400	Uncharacterized protein	Parastagon nodorum SI	ospora N15	protein	tos1 pthr3	31737
SNOG_00118	Uncharacterized protein	Parastagon nodorum SI	ospora N15	alkali-s pthr341	ensitive lir 154	ikage protein 1
□ AGOS_AER347W	1,3-beta- glucanosyltransferase	Eremotheci gossypii AT	um CC 10895	1,3-bet gas1 p	a-glucano: thr31468	syltransferase

Difference between AmiGO and QuickGO (beware)

- Gene-centric or protein-centric worldview
 - In UniProt GOA (and consequently in QuickGO) annotations are made to proteins, and there may be multiple proteins per gene, sometimes representing different isoforms.
 - GO Central omits the majority of the sequences and IEA [electronic] annotations from UniProtKB from the weekly database builds due to the large size of the data set.

Ontology and annotation uses

- Aids searching
- Data integration
- Data analysis
- Data visualization

Enrichment analysis

- Find significantly overrepresented terms among a list of genes
 - What do genes in a gene list have in common?
- Compare the annotations to your gene list with the annotations to the entire gene set to see if any terms are over or under represented compared to the background
 - E.g. 100 genes identified in an experiment, if 4/5 annotated to 'galactose metabolism' are identified, this is highly significant
- An enrichment provides enriched terms and a statistical measure of how likely your genes (result set) fall into that category by chance

H ₂ O ₂	2up	Heat	
cellular detoxification riboflavin biosynthetic process pyrimidine-containing compou protein refolding protein galactosylation transmembrane transport cellular response to oxidative s removal of superoxide radicals negative regulation of meiotic of generation of precursor metab 0 2	nd salvage tress cell cycle olites and energy 4 6	protein refolding chaperone-mediated protein folding protein folding proteasome-mediated ubiquitin-dependent cellular detoxification negative regulation of gluconeogenesis ubiquitin-dependent ERAD pathway macroautophagy cellular response to osmotic stress gluconeogenesis 0 2 4	protein
H ₂ O ₂	2down	Heat _{down}	

rRNA processing
ribosomal large subunit biogenesis
maturation of SSU-rRNA
ribosome biogenesis
maturation of LSU-rRNA from tricistronic rRNA t
flocculation
transcription from RNA polymerase I promoter
ribosomal large subunit export from nucleus
fungal-type cell wall (1->3)-beta-D-glucan bios
'de novo' IMP biosynthetic process

Thodberg et. al 2019 PMID:30566651

Components

GO annotations

- Gene list of interest phenotype screen, differentially expressed genes across conditions or WT vs mutant, interacting genes, etc
- **Background** (/reference) **gene set** -Set of all genes that *could* have been detected in the experiment. Do NOT include genes in the background set that couldn't have been identified in the screen
 - e.g. if you identified proteins with a specific protein modification then do not include ncRNA genes in your background
 - e.g. if a microarray only contained a subset of genes, then these are the background
- Some tools:

Enrichment Tools

- Many different tools available
 - GO tool (Panther): <u>http://pantherdb.org/webservices/go/overrep.jsp</u>
 - Princeton: http://go.princeton.edu/cgi-bin/GOTermFinder
 - G:profiler: <u>http://biit.cs.ut.ee/gprofiler/gost</u>
- It is worth comparing results from multiple tools (look/feel, agreement, etc)

Results	
---------	--

Results		Number of g to the GO te interest	enes annota rm in the list	ted of	Number of gen to the term in the		enes annotated he background set	
	Gene Ontology term ergosterol biosynthetic process		Cluster frequency 5 of 16 genes, 31.2%	Genome 38 of 540 0.7%	frequency	Corrected P-value	The probability seeing at least genes in the list	/ of t X st of
Repetition	ergosterol metabolic proces	<u>SS</u>	5 of 16 genes, 31.2% 5 of 16 genes, 31.2%	38 of 540 0.7% 38 of 540 0.7%)2 genes,)2 genes,	1.82e-05 1.82e-05	interest annota a specific GO considering ho commonly it is	interest annotated to a specific GO term, considering how commonly it is
	<u>phytosteroid biosynthetic pr</u>	<u>OCESS</u>	5 of 16 genes, 31.2%	38 of 540 0.7%)2 genes,	1.82e-05	background se	ne et
	cellular alcohol metabolic process		5 of 16 genes, 31.2%	38 of 5402 genes, 0.7%		1.82e-05	The closer the is to zero the l	r the value the less
	cellular alcohol biosynthetic	process	5 of 16 genes, 31.2%	38 of 540 0.7%)2 genes,	1.82e-05	likely it is to be observed by c	; hance

Results

- List of terms enriched in data-set
- List needs to be evaluated
 - Physiological relevance?
 - High level terms are often uninformative (for physiological role)
 - Pinpoint ancestor/child terms

Biological adhesion (GO:0022610) (1; 1.5%) Biological regulation (GO:0065007) (6; 9.2%) Cellular component organization or biogenesis (GO:0071840) (3; 4.6%) Cellular process (GO:0009987) (24; 36.9%) Developmental process (GO:0032502) (1; 1.5%) Immune system process (GO:0002376) (2; 3.1%) Localization (GO:0051179) (6; 9.2%) Metabolic process (GO:0008152) (27; 41.5%) Response to stimulus (GO:0050896) (11; 16.9%)

- Filter very similar terms out to narrow down the list
- Grouping related terms and concepts

GO Category	GO group	p value
GO:0009267	cellular response to starvation	3E-05
GO:0031929	TOR signaling cascade	9E-03
GO:0031048	chromatin silencing by small RNA	6E-03
GO:0030702	chromatin silencing at centromere	1E-02
GO:0030466	chromatin silencing at silent mating-type cassette	2E-02
GO:0031047	gene silencing by RNA	7E-02
GO:0010389	regulation of G2/M transition of mitotic cell cycle	6E-03
GO:0051325	interphase	1E-02
GO:0010972	negative regulation of G2/M transition of mitotic cell cycle	5E-02
GO:0071341	medial cortical node	2E-02

"significant enrichment of four distinct functional groups encompassing the regulation of the cell cycle, cytokinesis, response to nutrients, and chromatin modifications at the centromere" - Bauer et. al 2012 PMID:22768388

High level terms are often uninformative (for physiological role)

GO subsets (GO slims)

- Mapping granular annotations of a set of genes to high-level (more general) parent terms
 - A coarse-grained overview of detailed annotation
 - Possible because high-level terms are inherited
- Useful for visualizing broad annotation categories for a gene list / entire genome, or to summarize a dataset

Common uses of subsets/slims

1. Whole genome slims

- Summarises an organism's biology
- A resource for planning curation (or research) enables identification of unannotated or uncharacterized genes
- Needs to be biologically relevant and redundancy minimized
- Coverage needs to be as good as possible

Cell color indicative of annotation volume

https://www.alliancegenome.org/gene/HGNC:11998#function---go-annotations

2. Single gene overview

- E.g. ribbon display
- Indicates branches of GO applicable to gene
- High level grouping terms redundancy matters less

3. Slimming results from an analysis

- To aid interpretation of results (e.g. results from an enrichment)
- Data display/result summary smallest possible table that will convey the message

Thodberg et al. (2019) PMID:30566651

 Compared differentially expressed genes across different conditions (genes downregulated in hydrogen peroxide shown)

RNA processing
ribosome biogenesis
ribosomal large subunit biogenesis
maturation of SSU-rRNA
maturation of LSU-rRNA from tricistronic rRNA t
ribosomal large subunit export from nucleus
ribosomal subunit export from nucleus
ribosomal small subunit biogenesis
ribosomal large subunit assembly
peptidyl-diphthamide biosynthetic process from

Take the knowledge of the structure of the ontology to "slim down" the results for condensed data-display

H_2O_{2down}

- Ribosome biogenesis
- Translation

- Ready made subsets are available at the GO site
 - Includes (among others) species-specific genome subsets as well as a generic GO subset
 - http://geneontology.org/docs/download-ontology/#subsets
- No "one size fits all" you can create your own GO slim with terms of interest
 - <u>http://go.princeton.edu/cgi-bin/GOTermMapper</u>
 - Map2Slim script https://github.com/owlcollab/owltools/wiki/Map2Slim

Slimming tips

- Only slim one aspect (molecular function, biological process or cellular component) at a time
- Minimise genes that do not slim unannotated, unknown, unslimmed?

New gene characterization is slow!

20% of genes are still unknown Biological Process (- do not slim to any 'biologically informative' genome slim terms)

70% of human research is on proteins known pre-genome sequencing (PMID:21307913)

Slimming tips

- Only slim one aspect (molecular function, biological process or cellular component) at a time
- Minimise genes that do not slim **unannotated**, **unknown**, **unslimmed**?
- Terms must be picked manually
 - There are no readily identifiable 'levels' in the ontology
 - Avoid going too high (terms that slim most genes biologically uninformative)
 - Lump vs. split Some terms have a common parent in the ontology, but are largely unconnected in terms of gene sets
 - Nuclear gene expression vs. mitochondrial gene expression
 - Vesicle-mediated transport vs. nucleocytoplasmic transport

Lump vs. split, real example

Adapted from Hayles et al 2013 PMID:23697806

- Genome-wide deletion mutant phenotype screen
- GO analysis to identify genes annotated to cellular processes enriched within phenotype categories.
- The enrichment results were mapped to 'GO slim' (high level) terms

Some phenotypes (horizontal) are significantly enriched for specific GO processes (vertical)

Problems & pitfalls

- Versioning: GO (the ontology) and GO annotations are changing daily, check the date stamp on the ontology and the dataset you are using
- Not all genomes are comprehensively annotated
- **Unknowns** are ignored by enrichment tools, and these might be interesting genes in your list
- Be aware of evidence codes e.g. include RCA (computational predictions) more false positives
- Don't exclude electronic annotation codes (important for unannotated genes)
 - Analysis shows that they are as accurate as manual annotation, just not as specific (PMID:22693439)
- Enrichment: use the correct background set (the set of genes in your "experiment") If you used the whole protein set you need to filter for ncRNAs...
- **Slimming:** GO annotations are NOT mutually exclusive, therefore it doesn't make sense to put in a pie chart and show as distribution as percentages (it is an annotation number total, not a gene product count)
- Slimming: Consider genes that are annotated but not to terms in your slim set (you may need to define a better slim set)

Further reading PMID:18475267 Use and misuse of the Gene Ontology PMID: 24244145 Ten quick tips for using the gene ontology.

GO help and contact

- GO helpdesk (questions/feedback): <u>http://help.geneontology.org</u>
- FAQ: <u>http://geneontology.org/docs/faq/</u>
- Documentation: <u>http://geneontology.org/search.html</u>
- Technical questions and accessing GO codes: <u>https://github.com/geneontology</u>
- GO REST API (support common queries to GO): <u>http://api.geneontology.org/api</u>
- GO SPARQL (support common queries to GO-CAMs): <u>http://sparql.geneontology.org</u>

What about genomes with no GO annotation?

- Currently, GO recommends groups submit their transcriptomes to <u>NCBI</u>. These submissions will reach <u>UniProt</u>, where <u>InterPro2GO</u> automatically creates GO annotations. These annotations, made with the IEA evidence codes (<u>Inferred from Electronic Annotation</u>), will be made available in a future GO release.
- GO does not recommend groups create their own IEAs with internal tools due to reproducibility and accuracy concerns.

http://geneontology.org/docs/faq/#how-do-i-annotate-a-novel-genome-with-go-annotations

But what if people want to summarize it's functional capabilities using GO as part of a publication? I would recommend:

- 1. For a very basic first pass run interProscan and then use InterPro to GO mappings.
- If there is a well annotated model, and they can generate a good orthology mapping they can do direct transfer similar to what we did for japonicusDB https://academic.oup.com/genetics/advancearticle/doi/10.1093/genetics/iyab223/6481558?login=false
- 3. 3. For high quality annotations use PAINT and tree grafter (best way to get specific annotation if there is no close relative with good annotation coverage) https://academic.oup.com/bioinformatics/article/35/3/518/5056037
- 4. None are trivial, but presumably a project of that sort would have some provision for bioinfomatics support.
- 5. Personally I would not trust any tools which used blast or similar but others may have recommendations of tools that work well.