Zebrafish Dataset Practical 1

Before you start, make sure you've read the document that describes the zebrafish dataset we're
using in this practical. And make sure you've put the four required files (Amp.counts. tsv,
Amp.samples.tsv,Oxy.counts.tsvand Oxy.samples.tsv)inyour home directory.

To begin, here are a couple of exercises that require using the command line in Terminal:

1. Using the awk and wc commands, work out how many genes are significantly differentially ex-
pressed (adjusted p-value < 0.05) for the amphetamine and oxycodone treatments. How do these
numbers change if you reduce the adjusted p-value threshold to 0.005 or even 0.0005?

2. Using awk, create two new files that just contain the subset of significantly differentially expressed
genes (adjusted p-value < 0.05). Keep these two files as you'll need them later in the week. Also,
using cut, create two new files that just contain the Ensembl IDs of the significantly differentially
expressed genes. Again, keep these two Ffiles for later.

The rest of the practical uses R.
Open RStudio and load the tidyverse packages:

library(tidyverse)

Read in the DESeq2 results file:

assign the results file name to a variable
deseq results file <- 'Amp.counts.tsv'

load data
deseqg results <-
read tsv(deseqg results file,
- % cols(col character(),
col character()))

Here are some functions for inspecting a data.frame.
head shows the top 6 rows. If the object is a tibble, only the columns that fit on the width of the page
are shown.

gl impse shows the data frame transposed so that the columns become rows. This makes it possible
to see all of the columns if they don't fit on one page width.

View opens up a new viewer window which display the data like a spreadsheet.

Try them out.
head (deseqg results)

glimpse (deseq results)

View (deseq results)

Volcano plot

EnhancedVolcano is an R package for making volcano plots. The main function, Enhanced-
Volcano (), expects a data frame with a column of log, (fold change) and one for adjusted p value.
The names of the genes are supplied as a separate vector.

library (EnhancedvVolcano)

EnhancedVolcano (
deseq results, # results data frame
“deseq results$Name,
'log2fc', # column name of log2 fold change
'adjp' # column name of adjusted pvalue

Volcano plot

EnhancedVolcano

® NS © Log,FC p-value @ p-value andlog, FC

I I
| |
| |
40+ fosab | |
B
o 30- I I
o | |
h I I
g 20+ | |

n plekhsT’ | ponzr4
hed.1 L R I

si:dkey—239j18.3 o 9%F.sidkey1230b22.2

10 - S|:ch21ﬁl©22§t£7.5
____________________ hed.2 ________ccl20as ,
o 02 &
01 ® !
| |
-10 -5
Log, fold change
total = 32520 variables
Exercises

The EnhancedVolcano () function has many ways to customise the plot. Read the documentation
(?EnhancedVolcano) and re-plot the volcano plot with these changes.

1. Change the colours of the different categories (NS, Log2FC etc.)
2. Change the p-value cut-off to 0.01
3. Change the log2[Fold Change] cut-offto 1og2 (1.5).

4. Label the 10 genes with smallest p values and change the font face to italic.

Solutions

get the gene names of the top 10 genes by p value
genes to label <- deseq results %>%
arrange (adjp) %>%
pull (Name) %>%
head (10)

EnhancedVolcano (
deseq results,
deseq results$Name,
genes to label,
TRUE,
FALSE,
0.1,
'log2fc',
‘adjp',
le-02,
log2(1.5),
"italic",
c("grey80", "grey80", "#59B3E6", "#CCo6600"),
"Amphetamine-treated vs Control",
NULL

Amphetamine—-treated vs Control

NS Log, FC p—value p —value and log, FC
I I
| |
407 o
fosab ! !
| |
| |
a 307 L per2
= Junbb\: :
(@) I I
S 20+ plekhsl qpa5431| ponzré
| rgsZ . wler2a I pdk2b
ier2b 1
10 A " oh | !
®ed %l :
_____________________________________ oo SE& ____r’z;__________________
0+ o
]]]]
-10 -5 0 5

Log, fold change

total = 32520 variables

Arrangement of text labels

EnhancedVolcano adds text labels for genes, either ones above the log2fc and pvalue cut-offs, or
labels supplied to the selectLab argument.

ifthedrawConnectorsargumentissettoFALSE,EnhancedVolcanousesgeom text/geom label.
This means that the labels are plotted directly on top of the points. Also, if geom text is being used,
the check overlap argument is set to TRUE. This means that if any of the text labels overlap
previously plotted labels they will not be plotted. This only applies to geom text.Ifgeom label
is used, the labels will just be plotted on top of each other.
check_overlap

If TRUE, text that overlaps previous text in the same layer will not be plotted.

check_overlap happens at draw time and in the order of the data. Therefore data

should be arranged by the label column before calling geom_text () . Note that this

argument is not supported by geom_label() .

However,ifdrawConnectorsissettoTRUE,thegeom text repel/geom label repel
functions are used. These try to arrange the labels so that they don’t overlap points and don’t overlap
each other. They do this by adding random amounts of jitter to the labels and checking for overlaps.

This should mean that the labels avoid the points and each other. However, EnhancedVolcano sub-
setsthedataitgivestogeom (text/label) repeltojustthe pointstobe labelled. That means
geom (text /label) __repel doesn’t know about any of the other points and so can’t avoid them.

For an example of using ggplot2 to create a volcano plot, see the worked examples section.

Heatmap

The pheatmap package can be used to create heatmaps.
library (pheatmap)

First you need to create a matrix of values to plot as a heatmap.
Using filter and select, subset the results to differentially expressed genes (adjp < 0.05) and se-
lect the normalised count columns. Save to an object called sig counts

sig counts <- deseqg results %>%
filter to DE genes
filter(adjp < 0.05) %>%
select normalised count columns
select (contains (' normalised count'))

The column names all contain the string ' normalised count’. The column names get used as x-axis labels
on the heatmap, so we need to remove it. We can set the column names of the data frame with the
colnames function and use the str replace function from the stringr package to remove
the ending. -

str replace takes 3 arguments.

1. Avector of strings to do the substitution on
2. A pattern to look for
3. Astring to replace it with

This substitutes the string " normalised count" with
the empty string ""
colnames (sig counts) <-
str replace(colnames(sig counts), " normalised count", "")

Plot a heatmap of the normalised counts using the pheatmap function

pheatmap (sig counts)

20000
15000
10000
>>2>2>2Z>T2Z2T00000 =000
3333333333 ¢3 I
TS © o o o oI | 1T
Il T _ 11 L., N WM
AN O U P W 0

This initial plot has some issues. First, the counts need scaling. At the moment, the colour scale is domi-
nated by the small number of very highly expressed genes. Scaling is done by mean centering and scaling

the counts by the standard deviation for each row (%, Z-score).

https://en.wikipedia.org/wiki/Feature_scaling#Standardization_(Z-score_Normalization)

pheatmap has an option scale, which can either scale the values by column or row or both

pheatmap (sig counts,
"rowﬂ)

T[T

2
1
= 0
= —— -1
> 2> > 2> 22200000 -2
3 3 3 3 3 3 323 3 3 3
T © ©T T © © | | | 1| 1
I 1L 1 1 1 DN WP O .

D P N W b~ o
The rows and columns in the heatmap are automatically clustered and a tree for each is drawn.

The default colour scheme makes it difficult to see values in the middle of the range. Let’s change the
colour palette to one from the viridis package.

The inferno function, fromthe viridi s package, returns avector of n colours (10 in this case) from
the inferno colour scale.

library(viridis)
scales::show col (inferno (10), 0.0)

#000004FF #1BOC42FF #4BOC6BFF #781C6DFF

#A52C60FF #CF4446FF #FBOAOGFF

#F7DO3CFF | #FCFFA4FF

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html

The colorRampPalette function returns a function to interpolate more colours between those
supplied to create a smooth colour gradient.

scales::show col (colorRampPalette (inferno(10)) (100),
cex label = 0.4)

#000004 #020109 #04020F #070314 #09041A #0C0520 #0E0625 #11072B #160936
#180A3C #1B0C42 #1FOC45 #230C49 #280C4D #2C0OC50 #300C54 #350C58 #390C5C #3DOC5F

#420C63 #460C67 #4BOC6B #4FOD6B #530E6B #57106B #5B116B #5F136B #63146C #67166C

#6B176C #6F196C #731A6C #781C6D #7C1D6B #801EGA #842069 #882168 #8C2367 #902465

#942664 #982763 #9C2962 #A02A61 #A52C5F #AB2E5D #AC305B #B03258 #B43456 #B83654

#BB3951 #BF3B4F #C33D4D #C73F4A #CB4148 #CF4446

#FBIYAO6 | #FA9EOA

#F9A814 | #FOAD19 | #FOB21E | #F8B723 | #F8BC28 | #F8C12D | #F7C632 | #F7CB37 | #F7D03C | #F7D445

#F7D84E | #F8DC58 | #F8E161 | #FOES6B | #FOE974 | #FAEDTE | #FAF287 | #FBF691 | #FBFAQA | #FCFFA4

We can add this to the heatmap using the color argument.

pheatmap (sig counts,
scale = "row",
color = colorRampPalette (inferno(10)) (100))

> > > 2> 2> 2200000
3 3 3 3 3 3 3232 323 32
T T © © T O | | | | |

| | | | | | 2N W PP O
o P N W A~ O

Exercises

Read the documentation for pheatmap and re-plot the heatmap with these changes.

1.

v A W N

Turn off plotting the gene names. There are too many genes in the heatmap to be able to read
individual labels.

. Rotate the column labels.
. Turn off the column clustering
. Split the heatmap in half based on the row clustering.

. Give more room to the gene clustering tree.

Solutions

pheatmap (sig counts,

scale = "row",

cluster cols = FALSE,

color = colorRampPalette (inferno(10)) (100),
show rownames = FALSE,

angle col = 45,

cutree rows = 2,

treeheight row = 100)

Count plot

To plot the normalised counts for each sample for a gene, we need a table of the sample info.
The samples file has columns for the sample name and drug treatment for each sample.

sample info file <- 'Amp.samples.tsv'

sample info <-
read tsv(sample info file,
c('sample', 'treatment')) %>%

set the order of sample by the order in which they appear
and set levels of treatment explicitly
mutate (fct inorder (sample),

factor (treatment,

c('Cnt', "Amp')))

To produce a count plot, we select the Gene and *normalised count columns, make the data tidy
and join in the sample information. The inner_join function from dp 1 yr joins two data frames together
by matching values in common columns. In this case, we are going to join the two on the samp 1 e column.

To make the sample names match those in the sample_info, we need to remove ” normalised count” from
the column names.

normalised counts <-

select (deseq_results, Gene, contains('normalised')) %>%
make data tidy
pivot longer (-Gene,

"sample",

"count") %>%
rename columns by removing " normalised count"
and set levels of sample using sample info
mutate (str replace(sample, " normalised count", ""),

factor (sample,
levels (sample infoS$sample))) %$>%

join in sample information -
inner join (sample info)

Then we filter to get the counts for a specific gene.
get a specific gene

ENSDARG00000031683 == fosab
counts for gene <- filter (normalised counts,
Gene == "ENSDARG00000031683")

Tosee what the counts for gene objectlooks like, try head (counts for gene).

https://dplyr.tidyverse.org/reference/mutate-joins.html

To see the counts for each individual sample we can plot sample on the x-axis and count on they, like this
basic count plot <- ggplot(data
geom point (aes(x = sample,

counts for gene) +

L Y count)) +
theme minimal () +
theme (axis.text.x element text (angle 90))
print (basic count plot)
[]
[]
800
€600 © °
>S5
o [
o
400
e o []
200 o ° °
T T T e T T T e T
f 2 : g g eEEEEECE
O 0o 0O 0O 0 g < < < < <
sample

We can customise the plot to make it look nicer by colouring the points by the treatment variable.

plot as points in different colours

sample count plot coloured <- ggplot (data
fill points by treatment variable

geom point (aes(x = sample, vy count, fill = treatment),
shape names can be used as well as numbers

size = 3, shape = 'circle filled') +
fill using the viridis scale

scale fill viridis d{() +
tidy up the labels

labs(x = "Sample", y = "Normalised Count", fill = "Treatment") +
theme minimal () +

theme (axis.text.x element text (angle

counts for gene) +

90))
print (sample count plot coloured)

10

([]
. 800
C
=)
(@]
o ° Treatment
S 600 o
g . . Cnt
©
£ O Amp
o 400
prd
O O @)
200 o © 0
N e s o T N @S o)
fEzzgEEEEEE
OO0 000 g << <<
Sample

With this plot, we can see the normalised count value for each individual sample, but with lots of samples
this will become unwieldy. Another option is to group the points by the t reatment variable.

plot points by treatment status

points by treatment <- ggplot (counts for gene) +
geom point (aes(treatment, count, treatment),
N 3, 'circle filled') +
scale fill wviridis d() +
labs (y "Normalised Count", "Treatment") +
theme minimal () +
this removes the x-axis title
theme (element blank())

print (points by treatment)

(]
[)
800
IS
=)
(@]
o Treatment
S 600 (]
ﬁ P ® cCnt
g O Amp
S 400
200 O
Cnt Amp

The points for each treatment group appear at the same x position and may plot on top of each other. To
avoid this we can add a random shift left or right to spread the points out.

11

The positionargumentof geom point isused to adjust the position of the points.
Theposition jitter functionaddsasmallvalue to both the x andy values.

Use the width and height arguments to control how large the spread of values is.
The seed argument makes the jitter reproducible.

jitter points to prevent overplotting

points jittered <- ggplot (counts for gene) +
geom point (aes(treatment, count, treatment),
- 3, 'circle filled',
position jitter(0.2,
0,
16354)) +

scale fill viridis d() +
labs ("Normalised Count", "Treatment") +
theme minimal () +
theme (element blank())

print (points jittered)

()
o
800
IS
>
(@]
o Treatment
S 600 o®
ﬁ ® ® cCnt
g O Amp
S 400
@. 0
200 O
Cnt Amp

Exercises

1. Try plotting a boxplot grouped by t reatment instead of points for each sample.

12

Solutions

boxplot

basic boxplot <- ggplot (counts for gene) +
geom boxplot (aes (treatment, = count,
scale fill viridis d() +
labs ("Normalised Count", "Treatment")
theme minimal () +
theme (element blank())

print (basic boxplot)

800
IS
>
(@]
S Treatment
© 600
% l. Cnt
: &3 Ao
2 400

200 |

Cnt Amp

13

+

treatment))

+

Worked Examples

Volcano Plot

Prepare the data for making a volcano plot. We need to convert the adjusted p-values to -log,,(adjusted
p-value). Also, we are going to make a new column that marks whether a gene is significantly different or
not and another column that shows whether genes are up or down or not differentially expressed.

make -1loglOp column
deseq results <-
mutate (deseq results, -1ogl0 (adjp),
~!is.na(adjp) & adjp < 0.05,
case when (
sig & log2fc > 0 ~ 'Up',
sig & log2fc < 0 ~ 'Down',
TRUE ~ 'Not Sig'
)) %>%
arrange (desc (adjp))

The basic volcano plot shows the -log,,(p-value) against the log,(Fold change) for each gene, with the
genes coloured by whether the gene is up or down or not significant.

plot adjusted pvalue against logZ2 fold change
with up coloured in orange and down coloured in blue
volcano plot <-

This sets the data for the plot

and specifies we want to plot loglOpval against logZfc

and colour it by the up down column

these aesthetics will apply to any other geoms added

ggplot (deseg results,

aes (log2fc, logl0p,
up down)) +

this says we want to plot the data as points

geom point () +

and this explicitly sets the colours for the 3 categories

and removes the legend title

scale colour manual (e

u c('#cc6600"', '#0073b3",
S DI ugrey8ou))

14

To print the ggplot objectuse print (volcano plot).

40-
°
30-
°
°
é?zo- ° U
o . . ° ° e Down
° Not Sig
° o ®
[® o e
° °
10- . —
o8 f’ ’
&g o
° °
° o °
o 8° o °
° &N o ©
O -
5 0
log2fc

Now that we have a basic plot we can add things to the same plot object using the + operator and save
the new plot object

For example, we can take the volcano plot and remove the legend and make better axis titles. Lastly we
can change the grey background.

this says take the previous plot object and add to it
and at the end save it back to the volcano plot object
volcano plot <- volcano plot +

remove the legend

guides (colour = "none") +

add better axis titles

labs (x = expr(log[2]*' (Fold Change) '),

v = expr (log[l0]*' (Adjusted pvalue) ')) +
a new theme that changes the grey background
theme minimal ()

print (volcano plot)

15

40

°
30
°
©
=
Y °
a
?
7 20 .
=1 o °® ° °
°© °
<
=
= ° o ®
o Y [J ° []
° °
°
10 . o
° .‘,
&g ®e
° o o
® °
o 8° °
.“‘ °
0
-5 0

log,(Fold Change)

The code above shows how ggplot objects can be built up by creating a basic object and then progressively
adding more to it.

Next we can add labels to some of the points which meet certain criteria. Let’s label the biggest changers.

We will add the labels using the ggrepel https://github.com/slowkow/ggrepel package. This is a
package designed to position point labels on plots by avoiding the points and other labels, so that all the
labels are legible.

So that ggrepel knows where all the points are we need to use the whole data frame. But, we only
want a few labels, so we need to make a new column that is an empty string for any points we don’t want
to label and has the gene name for the ones we do want to label.

create new column for names of genes we want to label
deseq results <- deseg results 3%>%
(

mutate (case when
up down == 'Down' & log2fc < -3 ~ Name,
up down == 'Up' & log2fc > 2 ~ Name,
TRUE e mw

))

16

https://github.com/slowkow/ggrepel

load the ggrepel package
library (ggrepel)
add geom text repel
since the x, y and colour aesthetics are defined in the
ggplot call only one more aesthetic (label) is required
labelled plot <-

ggplot (data = deseq results,

aes(x = log2fc, v = loglOp,
colour = up down)) +
geom point () +
geom text repel (aes(label = gene label)) +

scale colour manual (name = "",
values = c(Up = '#cc6600', Down = '#0073b3',
"Not Sig®™ = "grey80")) +
guides (colour = "none") +

labs(x = expr(log[2]*' (Fold Change) '),
v = expr (log[l0]*' (Adjusted pvalue) ")) +
theme minimal ()
print (labelled plot)

40
[]
30
[]
o
=
g °
o
?
g 20 ° ponzrd
=, ° ° °
< o*
3
— ° o ®
8 hell Y [] ° []
[] []
10 Si:dkey—239j18.3 °
. ()
° é
hel.2 o ."0
° o o
¢ o smtlb
.. “‘ [J
0
-5 0

log,(Fold Change)

One thing to notice here is that I've had to recreate the entire plot object rather than adding to it. That's
because the plot object saves a copy of the original data frame. So any changes you make to the data
frame will not be reflected in the plot object.

17

Or we could do just the top 10 genes by adjusted p-value.

get the top 10 genes by adjusted pvalue
top 10 genes <-
arrange (deseq results, adjp) 3%>%
sort by adjusted pvalue and get Gene ID
head (10) %>% pull ('Gene')

remake the gene label column
deseq results <- deseq results 3%>%
mutate (gene label = case when (
this tests whether the Gene ID exists
in the top 10 genes vector
Gene %in% top 10 genes ~ Name,
TRUE ~ "" -
))
this uses geom label repel () which draws boxes behind the text
top 10 plot <- ggplot(data = deseq results,
aes (x = log2fc, y = loglOp, colour = up down)) +
geom point () +
geom label repel (aes(label = gene label), seed = 765,
N N min.segment.length = 0) +

scale colour manual (values = c(Up = '#cc6600', Down = '#0073b3"',
"Not Sig ™ = "grey80")) +
guides (colour = "none") +
labs (x = expr(log[2]*' (Fold Change) '),
v = expr(log[l0]*' (Adjusted pvalue) ')) +
)

theme minimal (
print (top 10 plot)

40

30

20 plekhs1

rgsz °

10 e
«® o5
0,

log,(Fold Change)

.

logqg(Adjusted pvalue)

18

Or an arbitrary vector of gene ids.

start with a vector of gene ids

gene ids <- c("ENSDARG00000031683", "ENSDARGO0000055752",
"ENSDARG00000099195", "ENSDARG00000086881",
"ENSDARG00000023656"™, "ENSDARGO0000070041",
"ENSDARG00000089806™)

remake the gene label column
deseg results <- deseq results %>%
(

mutate(gene label = case when
Gene %in% gene ids ~ Name,
TRUE o mw

))

specific genes volcano plot <- ggplot (data = deseqg results,
aes(x = log2fc, y = loglOp, colour = up down)) +
geom point () +
geom label repel(aes(label = gene_ label), seed = 765,
min. Segment length = 0) +

scale colour manual (values = c(Up = '#cco6600',
Down = '#0073b3', 'Not Sig' = "grey80")) +
guides (colour = "none") +
labs(x = expr(log[2]*' (Fold Change) '),
v = expr (log[l0]*' (Adjusted pvalue) ")) +

theme minimal ()

print (specific genes volcano plot)

v

30

.

o o °
10 X : zgc:153920 e
[S|:dkey—239118.3 ’
[]
° []
-'-:ﬁ

-5 0
log,(Fold Change)

logyg(Adjusted pvalue)

19

Heatmap

For this we're going to use a subset of the data so that it is easy to see what is going on.

filter to DE genes and take the first 5 genes and 6 sample columns
sig counts <- deseq results 3%>%
filter(adjp < 0.05) %>%

@)

arrange (adjp) %>%

slice head(5) $>%
select (Gene, contains (' normalised count')) %>%
rename with (function (x) {

sub (" normalised count", "", x) }) %>%
select (Gene, Cnt 1, Cnt 2, Cnt 3, Amp 1, Amp 2, Amp 3)

kable (sig counts)

Gene Cnt_1 Cnt_2 Cnt_3 Amp_1 Amp_2 Amp_3

ENSDARG00000031683%11.66318 918.44271 599.64194 197.61987 216.40538 242.72234
ENSDARG00000034503%33.70510 715.18080 597.14343 1079.09638 1330.19823 1266.16969
ENSDARG00000104773875.06409 1003.13517 787.86288 512.89249 457.62790 545.64747
ENSDARGO00000055752751.62935 703.88847 687.08972 397.99722 402.03753 442.44269
ENSDARG00000087440 17.63353 11.29233 16.65672 68.93716 57.57574 74.53678

First we need to mean centre and scale the counts for each gene. The scale function will do this, but
it works on columns rather than rows.

Scaling and Centering of Matrix-like
Objects

Description

scale is generic function whose default method centers and/or scales the
columns of a numeric matrix.

Usage

scale ®x, center TRUE, scale TRUE

20

So, we have to transpose the matrix of counts, so that the columns represent the genes and the rows are

samples. We can do this using the t function.

The scale function expects a matrix where all the columns are numeric, so we have to remove the Gene
column. I've added the gene ids to the rownames of the matrix with set rownames

sig counts %>%
select (-Gene) %>% # remove Gene column
as.matrix () %>% # turn into a matrix
set the rownames to Gene
magrittr::set rownames (sig countsS$Gene)
t ()

Q ¢}
5>%

ENSDARG00000031683 ENSDARG00000034503 ENSDARG00000104773 ENSDARGO00000055752

Cnt_1 611.6632 633.7051 875.0641 751.6294
Cnt_2 918.4427 715.1808 1003.1352 703.8885
Cnt_3 599.6419 597.1434 787.8629 687.0897
Amp_1 197.6199 1079.0964 512.8925 397.9972
Amp_2 216.4054 1330.1982 457.6279 402.0375
Amp_3 242.7223 1266.1697 545.6475 442.4427
Once the matrix is transposed we can apply the scale function.
sig counts %>%
select (-Gene) %>%
as.matrix () %>%
magrittr::set rownames (sig counts$Gene) 3%>%
t() %>% scale/()
ENSDARG00000031683 ENSDARG00000034503 ENSDARGO00000104773 ENSDARG00000055752
Cnt_1 0.5033128 -0.9227744 0.7997079 1.1263122
Cnt_2 1.5519304 -0.6748157 1.3750149 0.8394540
Cnt_3 0.4622225 -1.0340442 0.4079922 0.7385163
Amp_1 -0.9119481 0.4327053 -0.8271999 -0.9985388
Amp_2 -0.8477364 1.1968950 -1.0754535 -0.9742620
Amp_3 -0.7577812 1.0020340 -0.6800616 -0.7314816
And transpose back using t again.
sig counts %>%
select (-Gene) %>%
as.matrix () %>%
magrittr::set rownames (sig counts$Gene) 3%>%
t() %>% scale() %>% t ()
Cnt_1 Cnt_2 Cnt_3 Amp_1 Amp_2
ENSDARGO00000031683 0.5033128 1.5519304 0.4622225 -0.9119481 -0.8477364
ENSDARGO00000034503 -0.9227744 -0.6748157 -1.0340442 0.4327053 1.1968950
ENSDARGO00000104773 0.7997079 1.3750149 0.4079922 -0.8271999 -1.0754535
ENSDARGO00000055752 1.1263122 0.8394540 0.7385163 -0.9985388 -0.9742620
ENSDARGO00000087440 -0.8097571 -1.0285228 -0.8434562 0.9601709 0.5682125

21

To cluster the matrix | have written a small function that takes a matrix and clusters the rows using the

hclust function.

function
cluster <-
create
distance

cluster based on the distance matrix
clustering <- hclust (distance matrix)

reorder the original matrix based on the clustering
mat ordered <- mat[clustering$order,]
return (mat ordered)

}

sig counts %>%
select (-Gene
as.matrix ()

o)
) %
O o)
5>%

magrittr::set rownames (sig countsS$Gene)

to cluster the rows of a data frame
function (mat) {
a distance matrix of pairwise distances between each gene
matrix <- dist (mat)

$>%

t() 3>% scale() %>% t() %>%
cluster ()
Cnt_1 Cnt_2 Cnt_3 Amp_1 Amp_2
ENSDARG00000034503 -0.9227744 -0.6748157 -1.0340442 0.4327053 1.1968950
ENSDARG00000087440 -0.8097571 -1.0285228 -0.8434562 0.9601709 0.5682125
ENSDARGO00000055752 1.1263122 0.8394540 0.7385163 -0.9985388 -0.9742620
ENSDARG00000031683 0.5033128 1.5519304 0.4622225 -0.9119481 -0.8477364
ENSDARG00000104773 0.7997079 1.3750149 0.4079922 -0.8271999 -1.0754535

After clustering the matrix, we can make the matrix back into a tibble and pivot it to make it compatible
with ggplot. To set the order of the Genes and samples we can use the fct inorder function from

the forcats package.
scale,

cluster and pivot

counts scaled clustered <- sig counts %>%

select (-Gene)
as.matrix () %>%

magrittr::set rownames (sig counts$Gene)

(o) Q
5>%

t() %>% scale()
cluster () %>%
as tibble (

pivot longer (-Gene,
fct inorder (Gene),
fct inorder (sample))

mutate (

>%

t() $>%

22

sample')

Q ¢}
5>%

make it back into a tibble
$>% # pivot longer for plottinc

Now we have the data in the right format. To make a heatmap, we use the samples as the x-axis values,
the genes as the y-axis values and the scaled counts as the fill value mapped to colour.

Each level of samples gets an integer value based on it's position in the factor and the same with
Gene. Something to remember is that the first level of Gene is assigned the value 1, so it is plotted at
the bottom of the y-axis, whereas the last level is plotted at the top.

counts scaled clustered $>%
mutate (Gene num = as.numeric (Gene),
sample num = as.numeric(sample)) %
select (Gene, Gene num, sample, sample num
head (10) %>%

~ V
o°

kable ()
Gene Gene_num sample sample_num
ENSDARG00000034503 1 Cnt_1 1
ENSDARG00000034503 1 Cnt_2 2
ENSDARG00000034503 1 Cnt_3 3
ENSDARG00000034503 1 Amp_1 4
ENSDARG00000034503 1 Amp_2 5
ENSDARG00000034503 1 Amp_3 6
ENSDARG00000087440 2 Cnt 1 1
ENSDARG00000087440 2 Cnt_2 2
ENSDARG00000087440 2 Cnt3 3
ENSDARG00000087440 2 Amp_1 4

To plot coloured squares/rectangles we can use geom tile.
ggplot (data = counts scaled clustered,
aes(x = sample, v = Gene)) +
geom tile(aes(fill = value))

ENSDARG00000104773 -
value
ENSDARG00000031683 - 1.5
1.0
2
& ENSDARGO00000055752 - 0.5
O
0.0
ENSDARG00000087440 - -0.5
-1.0

ENSDARG00000034503 -

Cnt1 Cnt2 Cnt3 Ampl Amp 2 Amp_3
sample

23

To make this look better, ggplot provides the viridis colour scales which we use here with
scale fill viridis c.

theme void gets rid of all gridlines and axis ticks, text and titles.

ggplot (counts scaled clustered,
aes (sample, Gene)) +
geom tile (aes(value)) +
scale fill viridis c('plasma') +

theme void()

value
1.5

If you have a very large heatmap to plot, it may be worth using geom raster which runs faster by
making all the tiles the same size.

If you want individual sample names on the x-axis, you can override just that bit of theme wvoid by

adding + theme (axis.text.x = element text (colour = "black")) after
theme void
ggplot (counts scaled clustered,
aes (sample, Gene)) +

geom_ tile (aes (value)) +

scale fill viridis c('plasma') +

theme void() +

theme (element text ("black", 45))

24

value
1.5

Now, let’s redo with all the data.

get DE genes
sig counts <- deseq results 3%>%
filter(adjp < 0.05) %>%
select (Gene, contains (' normalised count'))
select (Gene, contains('Cnt'), contains('Amp'
rename with(.fn = function (x) {
sub (" normalised count", "", x) })

scale, cluster and pivot
counts scaled clustered <- sig counts %>%
select (-Gene) %>%

as.matrix () %>%
magrittr::set rownames (sig counts$Gene) %>%
t() %>% scale() %>% t() %>%
cluster () %>%
as tibble (rownames = 'Gene') %>%
pivot longer (-Gene, names to = 'sample') %>%
mutate (Gene = fct inorder (Gene),

sample = fct inorder (sample))

25

ggplot (data = counts scaled clustered,
aes(x = sample, y = Gene)) +
geom tile(aes(fill = wvalue)) +
scale fill viridis c(option = 'plasma') +
theme void () +

theme (axis.text.x = element text (colour = "black", angle = 45))

26

	Volcano plot
	Exercises
	Solutions
	Arrangement of text labels

	Heatmap
	Exercises
	Solutions

	Count plot
	Exercises
	Solutions

	Worked Examples
	Volcano Plot
	Heatmap

